2-Factors Without Close Edges in the n-Dimensional Cube

Результат исследования: Научные публикации в периодических изданияхстатья

Аннотация

—We say that two edges in the hypercube are close if their endpoints form a 2-dimensional subcube. We consider the problem of constructing a 2-factor not containing close edges in the hypercube graph. For solving this problem,we use the new construction for building 2-factors which generalizes the previously known stream construction for Hamiltonian cycles in a hypercube.Owing to this construction, we create a family of 2-factors without close edges in cubes of all dimensions starting from 10, where the length of the cycles in the obtained 2-factors grows together with the dimension.

Язык оригиналаанглийский
Страницы (с-по)405-417
Число страниц13
ЖурналJournal of Applied and Industrial Mathematics
Том13
Номер выпуска3
DOI
СостояниеОпубликовано - 1 июл 2019

Fingerprint Подробные сведения о темах исследования «2-Factors Without Close Edges in the n-Dimensional Cube». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать