Узнаваемость В Предгейтинговых И Стройных Логиках

Результат исследования: Научные публикации в периодических изданияхстатья

Аннотация

In this paper the problems of recognizability and strong recognizavility, perceptibility and strong perceptibility in extensions of the minimal Johansson logic J [1] are studied. These concepts were introduced in [2, 3, 4]. Although the intuitionistic logic Int is recognizable over J [2], the problem of its strong recognizability over J is not solved. Here we prove that Int is strong recognizable and strong perceptible over the minimal pre-Heyting logic Od and the minimal well-composed logic JX. In addition, we prove the perceptibility of the formula F over JX. It is unknown whether the logic J+F is recognizable over J.

Язык оригиналарусский
Страницы (с-по)427-434
Число страниц8
ЖурналSiberian Electronic Mathematical Reports
Том16
DOI
СостояниеОпубликовано - 1 янв 2019

    Fingerprint

Ключевые слова

  • Calculus
  • Heyting algebra
  • Johansson algebra
  • Minimal logic
  • Pre- Heyting logic
  • Recognizability
  • Strong recognizability
  • Superintuitionistic logic

Цитировать