Аннотация
In this paper the problems of recognizability and strong recognizavility, perceptibility and strong perceptibility in extensions of the minimal Johansson logic J [1] are studied. These concepts were introduced in [2, 3, 4]. Although the intuitionistic logic Int is recognizable over J [2], the problem of its strong recognizability over J is not solved. Here we prove that Int is strong recognizable and strong perceptible over the minimal pre-Heyting logic Od and the minimal well-composed logic JX. In addition, we prove the perceptibility of the formula F over JX. It is unknown whether the logic J+F is recognizable over J.
Переведенное название | Узнаваемость в предгейтинговых и стройных логиках |
---|---|
Язык оригинала | английский |
Страницы (с-по) | 427-434 |
Число страниц | 8 |
Журнал | Сибирские электронные математические известия |
Том | 16 |
DOI | |
Состояние | Опубликовано - 1 янв 2019 |
Ключевые слова
- Calculus
- Heyting algebra
- Johansson algebra
- Minimal logic
- Pre- Heyting logic
- Recognizability
- Strong recognizability
- Superintuitionistic logic
Предметные области OECD FOS+WOS
- 1.01 МАТЕМАТИКА
ГРНТИ
- 27 МАТЕМАТИКА