Разрешимость краевой задачи о хаотичной динамике полимерной молекулы в случае ограниченного потенциала взаимодействия

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование

Аннотация

This paper deals with a boundary value problem for a parabolic,differential equation that describes a chaotic motion of a polymer,chain in water. The equation is nonlocal in time as well as in space. It,includes a so called interaction potential that depends on the integrals,of the solution over the entire time interval and over the space domain,where the problem is being solved. The time nonlocality appears since,the time plays the role of the arc length along the chain and each,segment interacts with all others through the surrounding fluid. The,weak solvability of the problem is proven for the case of the bounded,continuous interaction potential. The proof of the solvability does not,use any continuity properties of the solution with respect to the time,and is based on the energy estimate only

Язык оригиналарусский
Номер статьи63
Страницы (с-по)1714-1719
Число страниц6
ЖурналSiberian Electronic Mathematical Reports
Том18
Номер выпуска2
DOI
СостояниеОпубликовано - 2021

Ключевые слова

  • Initial boundary value problem
  • Nonlocal parabolic equation
  • Solvability

Предметные области OECD FOS+WOS

  • 1.01 МАТЕМАТИКА

ГРНТИ

  • 27.31 Дифференциальные уравнения с частными производными

Цитировать