Конструкция Херстейна для почти конечномерных супералгебр

Александр Сергеевич Панасенко, Виктор Николаевич Желябин

Результат исследования: Научные публикации в периодических изданияхстатья

1 Цитирования (Scopus)

Аннотация

The connections between semiprime associative Z2-graded algebras and Jordan superalgebras are studied. It is proved that if an adjoint Jordan superalgebra B (+)s to an associative noncommutative Z 2-graded semiprime superalgebra B contains an ideal, consisted of odd elements, then the center of algebra B contains a nonzero ideal. Besides, this ideal annihilates every commutator of the algebra B. As a corollary we have that if a Z 2-graded algebra B is just infinite then a Jordan superalgebra B (+)s is just infinite.

Переведенное названиеHerstein's construction for just infinite superalgebras
Язык оригиналарусский
Страницы (с-по)1317-1323
Число страниц7
ЖурналSiberian Electronic Mathematical Reports
Том14
DOI
СостояниеОпубликовано - 6 дек 2017

Ключевые слова

  • Ассоциативные алгебры
  • Йордановы супералгебры
  • Почти конечномерные алгебры
  • Полупервичные алгебры
  • Just infinite algebras
  • Associative algebras
  • Jordan superalgebras
  • Semiprime algebras

Fingerprint Подробные сведения о темах исследования «Конструкция Херстейна для почти конечномерных супералгебр». Вместе они формируют уникальный семантический отпечаток (fingerprint).

  • Цитировать