Traveltime-table compression using artificial neural networks for Kirchhoff-migration processing of microseismic data

Serafim I. Grubas, Georgy N. Loginov, Anton A. Duchkov

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Massive computation of seismic traveltimes is widely used in seismic processing, for example, for the Kirchhoff migration of seismic and microseismic data. Implementation of the Kirchhoff migration operators uses large precomputed traveltime tables (for all sources, receivers, and densely sampled imaging points). We have tested the idea of using artificial neural networks for approximating these traveltime tables. The neural network has to be trained for each velocity model, but then the whole traveltime table can be compressed by several orders of magnitude (up to six orders) to the size of less than 1 MB. This makes it convenient to store, share, and use such approximations for processing large data volumes. We evaluate some aspects of choosing neural-network architecture, training procedure, and optimal hyperparameters. On synthetic tests, we find a reasonably accurate approximation of traveltimes by neural networks for various velocity models. A final synthetic test shows that using the neural-network traveltime approximation results in good accuracy of microseismic event localization (within the grid step) in the 3D case.

Original languageEnglish
Pages (from-to)U121-U128
Number of pages8
JournalGeophysics
Volume85
Issue number5
DOIs
Publication statusPublished - 1 Sep 2020

Keywords

  • interpolation
  • microseismic
  • migration
  • neural networks
  • traveltime

Fingerprint

Dive into the research topics of 'Traveltime-table compression using artificial neural networks for Kirchhoff-migration processing of microseismic data'. Together they form a unique fingerprint.

Cite this