Toward understanding the unusual reactivity of mesoporous niobium silicates in epoxidation of C = C bonds with hydrogen peroxide

Irina D. Ivanchikova, Igor Y. Skobelev, Nataliya V. Maksimchuk, Eugenii A. Paukshtis, Mikhail V. Shashkov, Oxana A. Kholdeeva

Research output: Contribution to journalArticlepeer-review

26 Citations (Scopus)


Niobium-containing mesoporous silicates reveal superior activity and selectivity in epoxidation of alkenes using hydrogen peroxide as a green oxidant and, in contrast to mesoporous titanium silicates, catalyze epoxidation of both electron-rich and electron-deficient C=C bonds. This report describes a kinetic and mechanistic investigation of epoxidation of two representative substrates, cyclooctene (Cy0) and 2-methyl-1,4-naphthoquinone (MNQ), over two mesoporous niobium silicates with predominantly di(oligo)meric or isolated Nb(V) sites. The observed kinetic regularities did not depend on the state of Nb but were strictly determined by the nature of the organic substrate. The rate law established for Cy0 is consistent with a mechanism that involves interaction of H2O2 with Nb(V) sites to give a hydroperoxo species NbOOH and water, followed by oxygen transfer to a nucleophilic C=C bond, producing an epoxide and regenerating the initial state of the catalyst. This mechanism is strongly supported by stereospecificity in epoxidation of cis-alkenes and high heterolytic pathway selectivity in the oxidation of cyclohexene. The NbOOH species is manifested by an absorption feature at 307 nm in diffuse reflectance UV-vis spectra. The addition of a base (NaOAc) causes a shift of the absorption band to 293 nm and produces a rate-retarding effect on the epoxidation reaction. Several lines of evidence, including zero reaction order in MNQ rate-accelerating effect of base, detection of acetamide in the reaction mixture, negligible reaction rate in ethyl acetate, and recognition of weak basic sites in the niobium silicates using infrared spectroscopy of adsorbed CDCl3, all indicate that MNQ epoxidation proceeds by another mechanism that involves rate-limiting oxidation of the solvent molecule (MeCN) to generate peroxycarboximidic acid, which reacts with electron-deficient C=C bonds, producing an epoxy derivative and acetamide. (C) 2017 Elsevier Inc. All rights reserved.

Original languageEnglish
Pages (from-to)85-99
Number of pages15
JournalJournal of Catalysis
Publication statusPublished - 1 Dec 2017


  • Epoxidation
  • Heterogeneous catalysis
  • Hydrogen peroxide
  • Kinetics
  • Mechanism
  • Mesoporous niobium silicate

Fingerprint Dive into the research topics of 'Toward understanding the unusual reactivity of mesoporous niobium silicates in epoxidation of C = C bonds with hydrogen peroxide'. Together they form a unique fingerprint.

Cite this