Time-universal data compression and prediction

Research output: Chapter in Book/Report/Conference proceedingConference contributionResearchpeer-review

Abstract

Suppose there is a large file which should be transmitted (or stored) and there are several (say, m) admissible data-compressors. It seems natural to try all the compressors and then choose the best, i.e. the one that gives the shortest compressed file. Then transfer (or store) the index number of the best compressor (it requires [log m] bits) the compressed file. The only problem is the time, which essentially increases due to the need to compress the file m times (in order to find the best compressor). We propose a method that encodes the file with the optimal compressor, but uses a relatively small additional time: the ratio of this extra time and the total time of calculation can be limited by an arbitrary positive constant. A similar situation occurs when forecasting time series.Generally speaking, in many situations it may be necessary find the best data compressor (or predictor) out of a given set, which is often done by comparing them empirically. One of the goals of this work is to turn such a selection process into a part of the data compression method, automating and optimizing it.

Original languageEnglish
Title of host publication2019 IEEE International Symposium on Information Theory, ISIT 2019 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages562-566
Number of pages5
ISBN (Electronic)9781538692912
DOIs
Publication statusPublished - 1 Jul 2019
Event2019 IEEE International Symposium on Information Theory, ISIT 2019 - Paris, France
Duration: 7 Jul 201912 Jul 2019

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
Volume2019-July
ISSN (Print)2157-8095

Conference

Conference2019 IEEE International Symposium on Information Theory, ISIT 2019
CountryFrance
CityParis
Period07.07.201912.07.2019

Fingerprint Dive into the research topics of 'Time-universal data compression and prediction'. Together they form a unique fingerprint.

Cite this