Time-resolved study of thermal decomposition process of (NH4)2[PtCl6]: Intermediates and Pt nucleation

T. I. Asanova, E. A. Fedorova, I. P. Asanov, K. V. Yusenko, E. Yu Gerasimov, C. La Fontaine, O. Roudenko, D. B. Vasilchenko, S. V. Korenev

Research output: Contribution to journalArticlepeer-review

Abstract

Evolution in crystal, electronic and local atomic structures of Pt in ammonium hexachloroplatinate in the course of thermal decomposition in inert and reducing atmospheres have been studied by Powder X-Ray Diffraction (PXRD) and Quick X-ray Absorption Fine Structure (QXAFS) at Pt L3-edge for deeper understanding the thermally-induced solid state reaction and the formation of metallic nanoparticles. A three-step thermal decomposition mechanism of (NH4)2[PtCl6] in the inert atmosphere with the intermediate products Pt(NH3)2Cl2 and PtCl2 has been found instead one-[G.Meyer, A.Möller, J. Less. Common. Met. 170 (1991) 327–331] and two-step one [Q.Kong, F.Baudelet, J.Han, S.Chagnot, L.Barthe, J.Headspith, R. Goldsbrough, F.E.Picca, O.Spalla, Sci. Rep. 2 (2012) 1018–1025] considered early. In the reducing atmosphere, the thermal decomposition is a two-step process with the formation of the intermediate PtCl2. The best approach to determining the number of thermal decomposition steps turned out to be the express-analysis of QXAFS spectra offered in the papers, based on the simultaneous presentation of the most important parameters extracted from X-ray Absorption Near Edge Structure (XANES) and Fourier transformed Extended XAFS (EXAFS). This express-analysis was tested by comparison with results of various approaches such as conventional EXAFS fitting, linear combination fit (LCF), Multivariate Curve Resolution Alternating Least Squares method (MCR ALS).

Original languageEnglish
Article number110590
JournalVacuum
Volume194
DOIs
Publication statusPublished - Dec 2021

Keywords

  • Ammonium hexachloroplatinate
  • Pt L-edge
  • Pt nanoparticles
  • Pt nucleation
  • Quick XAFS
  • Thermal decomposition

OECD FOS+WOS

  • 2.05 MATERIALS ENGINEERING
  • 1.03 PHYSICAL SCIENCES AND ASTRONOMY

Fingerprint

Dive into the research topics of 'Time-resolved study of thermal decomposition process of (NH4)2[PtCl6]: Intermediates and Pt nucleation'. Together they form a unique fingerprint.

Cite this