Three-dimensional model of fracture propagation from the cavity caused by quasi-static load or viscous fluid pumping

Yuriy Shokin, Sergey Cherny, Denis Esipov, Vasily Lapin, Alexey Lyutov, Dmitriy Kuranakov

Research output: Chapter in Book/Report/Conference proceedingConference contributionResearchpeer-review

4 Citations (Scopus)

Abstract

Fracture propagation caused by fluid pumping is in the focus of the report. The most popular approaches and problem statements used for the propagation simulation are described. Methods of simulation of the main processes that take place during the fracture propagation are outlined. There processes are the follows: rock deformation and rock breaking, fluid flow inside the fracture and its filtration in the rock. New method of fracture propagation simulation is proposed. The method unites three sub-models that describe three (except the fluid filtration) processes that affect the fracture propagation. Important advance of the methodic is its ability to replace any sub-model without numerical algorithm modification. So the appropriate sub-model can be chosen for each process depending on the problem features. Thus quasi static and unsteady statement may be used for simulation of fracture propagation caused by viscous and inviscid fluid pumping. Rock deformation is described in scope of linear elasticity equation of homogeneous uniform material. Classical (similar to one used in [1]) and dual boundary element methods are used for this equations solution. Rock breaking caused by the fracture propagation is described by Irwin’s criterion coupled with maximal circumferential stress criterion for calculation of propagation direction. Various approaches are used to obtain stress intensity factors that are necessary for both criteria. Proposed methodic has been applied for fracture propagation simulation. The sensitivity of fracture propagation process to variation of the main physical parameters has been shown.

Original languageEnglish
Title of host publicationMathematical Modeling of Technological Processes - 8th International Conference, CITech 2015, Proceedings
EditorsYurii Shokin, Nargozy Danaev, Darkhan Akhmed-Zaki D.
PublisherSpringer-Verlag GmbH and Co. KG
Pages143-157
Number of pages15
ISBN (Print)9783319250571
DOIs
Publication statusPublished - 2015
Externally publishedYes
Event 8th International Conference on Mathematical Modeling of Technological Processes, CITech 2015 - Almaty, Kazakhstan
Duration: 24 Sep 201527 Sep 2015

Publication series

NameCommunications in Computer and Information Science
Volume549
ISSN (Print)1865-0929

Conference

Conference 8th International Conference on Mathematical Modeling of Technological Processes, CITech 2015
CountryKazakhstan
CityAlmaty
Period24.09.201527.09.2015

Keywords

  • Hydraulic fracturing
  • Non-planar fracture propagation
  • Quasi-Static load
  • Three-dimensional dual boundary elements method
  • Viscous fluid

Fingerprint Dive into the research topics of 'Three-dimensional model of fracture propagation from the cavity caused by quasi-static load or viscous fluid pumping'. Together they form a unique fingerprint.

Cite this