Abstract
We consider the process of partial sums of moving averages of finite order with a regular varying memory function, constructed from a stationary sequence having the structure of a two-sided moving average. We study the Gaussian approximation of this process of partial sums with the aid of a certain class of Gaussian processes, and obtain estimates of the rate of convergence in the invariance principle in the Strassen form.
Translated title of the contribution | Принцип Инвариантности В Форме Штрассена Для Процессов Частных Сумм Скользящих Средних Конечного Порядка |
---|---|
Original language | English |
Pages (from-to) | 1292-1300 |
Number of pages | 9 |
Journal | Сибирские электронные математические известия |
Volume | 15 |
DOIs | |
Publication status | Published - 1 Jan 2018 |
Keywords
- invariance principle
- fractal Brownian motion
- moving average
- Gaussian process
- memory function
- regular varying function
- ANOMALOUS DIFFUSION
State classification of scientific and technological information
- 27 MATHEMATICS