The Enigma of Substrate Recognition and Catalytic Efficiency of APE1-Like Enzymes

Anastasiia T. Davletgildeeva, Alexander A. Ishchenko, Murat Saparbaev, Olga S. Fedorova, Nikita A. Kuznetsov

Research output: Contribution to journalArticlepeer-review

Abstract

Despite significant achievements in the elucidation of the nature of protein-DNA contacts that control the specificity of nucleotide incision repair (NIR) by apurinic/apyrimidinic (AP) endonucleases, the question on how a given nucleotide is accommodated by the active site of the enzyme remains unanswered. Therefore, the main purpose of our study was to compare kinetics of conformational changes of three homologous APE1-like endonucleases (insect Drosophila melanogaster Rrp1, amphibian Xenopus laevis xAPE1, and fish Danio rerio zAPE1) during their interaction with various damaged DNA substrates, i.e., DNA containing an F-site (an uncleavable by DNA-glycosylases analog of an AP-site), 1,N6-ethenoadenosine (εA), 5,6-dihydrouridine (DHU), uridine (U), or the α-anomer of adenosine (αA). Pre-steady-state analysis of fluorescence time courses obtained for the interaction of the APE1-like enzymes with DNA substrates containing various lesions allowed us to outline a model of substrate recognition by this class of enzymes. It was found that the differences in rates of DNA substrates’ binding do not lead to significant differences in the cleavage efficiency of DNA containing a damaged base. The results suggest that the formation of enzyme–substrate complexes is not the key factor that limits enzyme turnover; the mechanisms of damage recognition and cleavage efficacy are related to fine conformational tuning inside the active site.

Original languageEnglish
Article number617161
Pages (from-to)617161
JournalFrontiers in Cell and Developmental Biology
Volume9
DOIs
Publication statusPublished - 26 Mar 2021

Keywords

  • abasic site
  • apurinic/apyrimidinic endonuclease
  • DNA repair
  • pre-steady state kinetics
  • target nucleotide recognition

OECD FOS+WOS

  • 1.06 BIOLOGICAL SCIENCES
  • 1.06.DR CELL BIOLOGY
  • 1.06.HY DEVELOPMENTAL BIOLOGY

Fingerprint

Dive into the research topics of 'The Enigma of Substrate Recognition and Catalytic Efficiency of APE1-Like Enzymes'. Together they form a unique fingerprint.

Cite this