Tests of the hydrogen-fueled detonation ramjet model in a wind tunnel with thrust measurements

S. M. Frolov, V. I. Zvegintsev, V. S. Ivanov, V. S. Aksenov, I. O. Shamshin, D. A. Vnuchkov, D. G. Nalivaichenko, A. A. Berlin, V. M. Fomin

Research output: Chapter in Book/Report/Conference proceedingConference contributionResearchpeer-review

1 Citation (Scopus)

Abstract

Experimental studies of an axisymmetric hydrogen-fueled detonation ramjet model 1.05-meter long and 0.31 m in diameter with an expanding annular combustor were performed in a pulse wind tunnel under conditions of approaching air stream Mach number ranging from 4 to 8 with the stagnation temperature of 293 K. In a supersonic air flow entering the combustor, continuous and longitudinally pulsating modes of hydrogen detonation with the corresponding characteristic frequencies of 1250 and 900 Hz were obtained. The maximum measured values of the fuel-based specific impulse and total thrust were 3600 s and 2200 N.

Original languageEnglish
Title of host publicationProceedings of the XXV Conference on High-Energy Processes in Condensed Matter, HEPCM 2017
Subtitle of host publicationDedicated to the 60th Anniversary of the Khristianovich Institute of Theoretical and Applied Mechanics SB RAS
Editors Fomin
PublisherAmerican Institute of Physics Inc.
Number of pages8
Volume1893
ISBN (Electronic)9780735415782
DOIs
Publication statusPublished - 26 Oct 2017
Event25th Conference on High-Energy Processes in Condensed Matter, HEPCM 2017 - Novosibirsk, Russian Federation
Duration: 5 Jun 20179 Jun 2017

Publication series

NameAIP Conference Proceedings
PublisherAMER INST PHYSICS
Volume1893
ISSN (Print)0094-243X

Conference

Conference25th Conference on High-Energy Processes in Condensed Matter, HEPCM 2017
CountryRussian Federation
CityNovosibirsk
Period05.06.201709.06.2017

Keywords

  • EXPERIMENTAL PROOF
  • ENERGY EFFICIENCY
  • COMBUSTOR
  • AIR
  • PROPULSION
  • ENGINE
  • CYCLE

Fingerprint Dive into the research topics of 'Tests of the hydrogen-fueled detonation ramjet model in a wind tunnel with thrust measurements'. Together they form a unique fingerprint.

Cite this