Temperature-driven single-valley Dirac fermions in HgTe quantum wells

M. Marcinkiewicz, S. Ruffenach, S. S. Krishtopenko, A. M. Kadykov, C. Consejo, D. B. But, W. Desrat, W. Knap, J. Torres, A. V. Ikonnikov, K. E. Spirin, S. V. Morozov, V. I. Gavrilenko, N. N. Mikhailov, S. A. Dvoretskii, F. Teppe

Research output: Contribution to journalArticlepeer-review

24 Citations (Scopus)

Abstract

We report on the temperature-dependent magnetospectroscopy of two HgTe/CdHgTe quantum wells below and above the critical well thickness dc. Our results, obtained in magnetic fields up to 16 T and s temperature range from 2 to 150 K, clearly indicate a change in the band-gap energy with temperature. A quantum well wider than dc evidences a temperature-driven transition from topological insulator to semiconductor phases. At a critical temperature of 90 K, the merging of inter- and intraband transitions in weak magnetic fields clearly specifies the formation of a gapless state, revealing the appearance of single-valley massless Dirac fermions with a velocity of 5.6×105ms-1. For both quantum wells, the energies extracted from the experimental data are in good agreement with calculations on the basis of the eight-band Kane Hamiltonian with temperature-dependent parameters.

Original languageEnglish
Article number035405
Number of pages5
JournalPhysical Review B
Volume96
Issue number3
DOIs
Publication statusPublished - 5 Jul 2017

Keywords

  • MASSLESS KANE FERMIONS
  • INTERFACE STATES
  • SEMIMETAL
  • GRAPHENE
  • PHASE

Fingerprint Dive into the research topics of 'Temperature-driven single-valley Dirac fermions in HgTe quantum wells'. Together they form a unique fingerprint.

Cite this