Abstract

This paper is devoted to the study of formation mechanism of metal solid solutions during the thermolysis of single-source precursors in Co-Pt systems with a wide range of superstructural ordering. It is shown that the thermal decomposition of [Pt(NH 3 ) 4 ][Co(C 2 O 4 ) 2 (H 2 O) 2 ]·2H 2 O salt in helium is critically different from that under hydrogen atmospheres. Thermal degradation under the helium atmosphere is followed by a gradual reduction of platinum and cobalt, and at each thermolysis temperature only one phase is present. At 380 °C an equiatomic Co 0.50 Pt 0.50 solid solution is formed (a = 3.749 (4) Å, Fm-3m space group, V/Z = 13.17 Å 3 , crystallite size: 5-7 nm). When the precursor is decomposed under a hydrogen atmosphere, the process proceeds mainly through the simultaneous reduction of the platinum and cobalt atoms, and at each temperature section two metal phases are present. The formation of the close to equiatomic Co 0.50 Pt 0.50 solid solution (a = 3.782 (4) Å, Fm-3m space group, V/Z = 13.52 Å 3 , crystallite size: 7-9 nm) occurs at 450 °C. The calculations of crystallite sizes are confirmed by transmission electron microscopy data.

Original languageEnglish
Pages (from-to)S27-S31
Number of pages5
JournalPowder Diffraction
Volume34
Issue numberS1
DOIs
Publication statusPublished - Sep 2019

Keywords

  • cobalt
  • nanoalloy formation
  • nanoparticles
  • platinum
  • powder diffraction
  • MAGNETIC-PROPERTIES
  • CO
  • PREFERENTIAL OXIDATION

Fingerprint

Dive into the research topics of 'Study of Co <sub>x</sub> Pt <sub>1-x</sub> nanoalloy formation mechanism via single-source precursors'. Together they form a unique fingerprint.

Cite this