Strong Law of Large Numbers for a Function of the Local Times of a Transient Random Walk in Zd

Inna M. Asymont, Dmitry Korshunov

Research output: Contribution to journalArticlepeer-review


For an arbitrary transient random walk (Sn)n≥0 in Zd, d≥ 1 , we prove a strong law of large numbers for the spatial sum ∑x∈Zdf(l(n,x)) of a function f of the local times l(n,x)=∑i=0nI{Si=x}. Particular cases are the number of(a)visited sites [first considered by Dvoretzky and Erdős (Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, pp 353–367, 1951)], which corresponds to the function f(i) = I{ i≥ 1 } ;(b)α-fold self-intersections of the random walk [studied by Becker and König (J Theor Probab 22:365–374, 2009)], which corresponds to f(i) = iα;(c)sites visited by the random walk exactly j times [considered by Erdős and Taylor (Acta Math Acad Sci Hung 11:137–162, 1960) and Pitt (Proc Am Math Soc 43:195–199, 1974)], where f(i) = I{ i= j}.

Original languageEnglish
Pages (from-to)2315-2336
Number of pages22
JournalJournal of Theoretical Probability
Issue number4
Publication statusPublished - 1 Dec 2020
Externally publishedYes


  • Local times
  • Strong law of large numbers
  • Transient random walk in Z
  • math><mml
  • Transient random walk in <mml
  • msup><mml
  • end{document}<inline-graphic xlink
  • usepackage{amssymb}
  • setlength{
  • usepackage{amsmath}
  • oddsidemargin}{-69pt}
  • math>
  • usepackage{wasysym}
  • usepackage{amsbsy}
  • begin{document}$${
  • usepackage{upgreek}
  • mi></mml
  • usepackage{amsfonts}
  • msup></mml
  • gif"
  • documentclass[12pt]{minimal}
  • href="10959_2019_937_Article_IEq12
  • mrow><mml
  • mi mathvariant="double-struck">Z</mml
  • usepackage{mathrsfs}
  • mi>d</mml
  • mathbb {Z}}<^>d$$
  • >

Fingerprint Dive into the research topics of 'Strong Law of Large Numbers for a Function of the Local Times of a Transient Random Walk in Z<sup>d</sup>'. Together they form a unique fingerprint.

Cite this