The Tunka Advanced Instrument for Gamma-ray and cosmic ray Astrophysics (TAIGA) is a hybrid experiment for the measurement of Extensive Air Showers (EAS) with good spectral resolution in the TeV to PeV energy range. In this domain, the long-sought Pevatrons can be detected. Currently the TAIGA detector complex combines a two wide angle shower front Cherenkov light sampling timing arrays (HiSCORE and Tunka-133), two 4 m class, 10º aperture Imaging Air Cherenkov Telescopes (IACTs) and 240 m2 surface and underground charged particle detector stations. Our goal is to introduce a new hybrid reconstruction technique, combining the good angular and shower core resolution of HiSCORE with the gamma-hadron separation power of imaging air Cherenkov telescopes. This approach allows to maximize the effective area and simultaneously to reach a good gamma-hadron separation at low energies (few teraelectronvolts). At higher energies, muon detectors are planned to enhance gamma-hadron separation. During the commissioning phase of the first and second IACT, several sources were observed. First detections of known sources with the first telescope show the functionality of the TAIGA IACTs. Here, the status of the TAIGA experiment will be presented, along with first results from the current configuration.

Original languageEnglish
Article number23
Pages (from-to)1045-1052
Number of pages8
JournalPhysics of Atomic Nuclei
Issue number6
Publication statusPublished - Nov 2021




Dive into the research topics of 'Status and First Results of TAIGA'. Together they form a unique fingerprint.

Cite this