Some new results on Gröbner-Shirshov bases for Lie algebras and around

L. A. Bokut, Yuqun Chen, Abdukadir Obul

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

We review Gröbner-Shirshov bases for Lie algebras and survey some new results on Gröbner-Shirshov bases for ω-Lie algebras, Gelfand-Dorfman-Novikov algebras, Leibniz algebras, etc. Some applications are given, in particular, some characterizations of extensions of groups, associative algebras and Lie algebras are given.

Original languageEnglish
Pages (from-to)1403-1423
Number of pages21
JournalInternational Journal of Algebra and Computation
Volume28
Issue number8
DOIs
Publication statusPublished - 1 Dec 2018

Keywords

  • extension
  • Gelfand-Dorfman-Novikov algebra
  • Gröbner-Shirshov basis
  • Leibniz algebra
  • Lie algebra
  • ω -algebra
  • Omega-algebra
  • Grobner-Shirshov basis

Fingerprint

Dive into the research topics of 'Some new results on Gröbner-Shirshov bases for Lie algebras and around'. Together they form a unique fingerprint.

Cite this