Replica Symmetry Breaking in FRET-Assisted Random Laser Based on Electrospun Polymer Fiber

Jiangying Xia, Jijun He, Kang Xie, Xiaojuan Zhang, Lei Hu, Yaxin Li, Xianxian Chen, Jiajun Ma, Jianxiang Wen, Jingjing Chen, Qiaosheng Pan, Junxi Zhang, Ilya D. Vatnik, Dmitry Churkin, Zhijia Hu

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)

Abstract

Spin-glass theory has been widely introduced to describe the statistical behaviors in complex physical systems. By analogy between disorder photonics and other complex systems, the glassy behavior, especially the replica symmetry breaking (RSB) phenomenon, has been observed in random lasers. However, previous studies only analyzed the statistical properties of the random laser systems with single gain material. Here, the first experimental evidence of the glassy behavior in a random laser with complex energy level structure is reported. This novel random laser is demonstrated based on the electrospun polymer fibers with the assistance of Förster resonance energy transfer (FRET). The electrospinning technology employed in the experiment herein promises high-volume production of random laser devices with multiple energy levels, enabling the comprehensive investigation of lasing properties in multi-energy level random laser system. Clear paramagnetic phase and spin-glass phase are observed in the FRET-assisted random laser under different pump energies. The RSB phase transition is verified to occur at the laser threshold, which is robust among the random lasers with different donor–acceptor ratio. The finding of RSB in FRET-assisted random laser provides a new statistical analysis method toward the laser system with complex energy level, for example, quantum cascade laser.

Original languageEnglish
Article number1900066
Number of pages10
JournalAnnalen der Physik
Volume531
Issue number9
DOIs
Publication statusPublished - 1 Sep 2019
Externally publishedYes

Keywords

  • electrospun polymer fiber
  • Förster resonance energy transfer
  • random laser
  • replica symmetry breaking
  • Forster resonance energy transfer
  • PHYSICS

Fingerprint Dive into the research topics of 'Replica Symmetry Breaking in FRET-Assisted Random Laser Based on Electrospun Polymer Fiber'. Together they form a unique fingerprint.

Cite this