Polymer-Stabilized Elemental Boron Nanoparticles for Boron Neutron Capture Therapy: Initial Irradiation Experiments

Alexander Zaboronok, Polina Khaptakhanova, Sergey Uspenskii, Raman Bekarevich, Ludmila Mechetina, Olga Volkova, Bryan J. Mathis, Vladimir Kanygin, Eiichi Ishikawa, Anna Kasatova, Dmitrii Kasatov, Ivan Shchudlo, Tatiana Sycheva, Sergey Taskaev, Akira Matsumura

Research output: Contribution to journalArticlepeer-review

Abstract

Sufficient boron-10 isotope (10 B) accumulation by tumor cells is one of the main requirements for successful boron neutron capture therapy (BNCT). The inability of the clinically registered10 B-containing borophenylalanine (BPA) to maintain a high boron tumor concentration during neutron irradiation after a single injection has been partially solved by its continuous infusion; however, its lack of persistence has driven the development of new compounds that overcome the imperfections of BPA. We propose using elemental boron nanoparticles (eBNPs) synthesized by cascade ultrasonic dispersion and destruction of elemental boron microparticles and stabilized with hydroxyethylcellulose (HEC) as a core component of a novel boron drug for BNCT. These HEC particles are stable in aqueous media and show no apparent influence on U251, U87, and T98G human glioma cell proliferation without neutron beam irradiation. In BNCT experiments, cells incubated with eBNPs or BPA at an equivalent concentration of 40 µg10 B/mL for 24 h or control cells without boron were irradiated at an accelerator-based neutron source with a total fluence of thermal and epithermal neutrons of 2.685, 5.370, or 8.055 × 1012 /cm2 . The eBNPs significantly reduced colony-forming capacity in all studied cells during BNCT compared to BPA, verified by cell-survival curves fit to the linearquadratic model and calculated radiobiological parameters, though the effect of both compounds differed depending on the cell line. The results of our study warrant further tumor targeting-oriented modifications of synthesized nanoparticles and subsequent in vivo BNCT experiments.

Original languageEnglish
Article number761
JournalPharmaceutics
Volume14
Issue number4
DOIs
Publication statusPublished - Apr 2022

Keywords

  • accelerator-based neutron source
  • boron neutron capture therapy
  • elemental boron nanoparticles
  • hydroxyethylcellulose
  • polymer stabilization

OECD FOS+WOS

  • 3.01 BASIC MEDICAL RESEARCH

Fingerprint

Dive into the research topics of 'Polymer-Stabilized Elemental Boron Nanoparticles for Boron Neutron Capture Therapy: Initial Irradiation Experiments'. Together they form a unique fingerprint.

Cite this