## Abstract

A new development of polyhedral complementarity investigation is presented. This consideration extends the author's original approach to the equilibrium problem in a linear exchange model and its variations. Two polyhedral complexes in duality and a cells correspondence are given. The problem is to find a point of intersection of the cells corresponding each other. This is a natural generalization of linear complementarity problem. Now we study arising point-to-set mappings without the original exchange model. The potentiality for a special class of regular mappings is proved. As a result the fixed point problem of mapping reduces to an optimization problem. Two finite algorithms for this problem are considered.

Original language | English |
---|---|

Pages (from-to) | 511-516 |

Number of pages | 6 |

Journal | CEUR Workshop Proceedings |

Volume | 1987 |

Publication status | Published - 2017 |