The reconstruction and calibration algorithms used to calculate missing transverse momentum (ETmiss) with the ATLAS detector exploit energy deposits in the calorimeter and tracks reconstructed in the inner detector as well as the muon spectrometer. Various strategies are used to suppress effects arising from additional proton–proton interactions, called pileup, concurrent with the hard-scatter processes. Tracking information is used to distinguish contributions from the pileup interactions using their vertex separation along the beam axis. The performance of the ETmiss reconstruction algorithms, especially with respect to the amount of pileup, is evaluated using data collected in proton–proton collisions at a centre-of-mass energy of 8 TeV during 2012, and results are shown for a data sample corresponding to an integrated luminosity of 20.3fb-1. The simulation and modelling of ETmiss in events containing a Z boson decaying to two charged leptons (electrons or muons) or a W boson decaying to a charged lepton and a neutrino are compared to data. The acceptance for different event topologies, with and without high transverse momentum neutrinos, is shown for a range of threshold criteria for ETmiss , and estimates of the systematic uncertainties in the ETmiss measurements are presented.

Original languageEnglish
Article number241
Pages (from-to)241
Number of pages46
JournalEuropean Physical Journal C
Issue number4
Publication statusPublished - 1 Apr 2017



Fingerprint Dive into the research topics of 'Performance of algorithms that reconstruct missing transverse momentum in √s = 8 TeV proton–proton collisions in the ATLAS detector: see text]= 8 TeV proton-proton collisions in the ATLAS detector'. Together they form a unique fingerprint.

Cite this