Parameters of thermochemical plumes responsible for the formation of batholiths: Results of experimental simulation

A. A. Kirdyashkin, A. G. Kirdyashkin, V. V. Gurov

    Research output: Contribution to journalArticlepeer-review

    2 Citations (Scopus)


    Based on laboratory and theoretical modeling results, we present the thermal and hydrodynamical structure of the plume conduit during plume ascent and eruption on the Earth’s surface. The modeling results show that a mushroom-shaped plume head forms after melt eruption on the surface for 1.9 < Ka < 10. Such plumes can be responsible for the formation of large intrusive bodies, including batholiths. The results of laboratory modeling of plumes with mushroom-shaped heads are presented for Ka = 8.7 for a constant viscosity and uniform melt composition. Images of flow patterns are obtained, as well as flow velocity profiles in the melt of the conduit and the head of the model plume. Based on the laboratory modeling data, we present a scheme of a thermochemical plume with a mushroom-shaped head responsible for the formation of a large intrusive body (batholith). After plume eruption to the surface, melting occurs along the base of the massif above the plume head, resulting in a mushroom-shaped plume head. A possible mechanism for the formation of localized surface manifestations of batholiths is presented. The parameters of some plumes with mushroom-shaped heads (plumes of the Altay-Sayan and Barguzin-Vitim large-igneous provinces, and Khangai and Khentei plumes) are estimated using geological data, including age intervals and volumes of magma melts.

    Original languageEnglish
    Pages (from-to)398-411
    Number of pages14
    Issue number4
    Publication statusPublished - 1 Jul 2017


    • batholiths
    • eruption volume
    • melt
    • plume conduit
    • plume head
    • thermal power
    • thermochemical plumes


    Dive into the research topics of 'Parameters of thermochemical plumes responsible for the formation of batholiths: Results of experimental simulation'. Together they form a unique fingerprint.

    Cite this