On the Wiener complexity and the Wiener Index of fullerene graphs

Andrey A. Dobrynin, Andrei Yu Vesnin

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)

Abstract

Fullerenes are molecules that can be presented in the form of cage-like polyhedra, consisting only of carbon atoms. Fullerene graphs are mathematical models of fullerene molecules. The transmission of a vertex v of a graph is a local graph invariant defined as the sum of distances from v to all the other vertices. The number of different vertex transmissions is called the Wiener complexity of a graph. Some calculation results on theWiener complexity and theWiener index of fullerene graphs of order n ≤ 232 and IPR fullerene graphs of order n ≤ 270 are presented. The structure of graphs with the maximal Wiener complexity or the maximal Wiener index is discussed, and formulas for the Wiener index of several families of graphs are obtained.

Original languageEnglish
Article number1071
Number of pages17
JournalMathematics
Volume7
Issue number11
DOIs
Publication statusPublished - 1 Nov 2019

Keywords

  • Fullerene
  • Graph
  • Wiener complexity
  • Wiener index
  • MATHEMATICAL ASPECTS
  • TREES
  • INFINITE FAMILY
  • ISOMERS
  • CONSTRUCTIVE ENUMERATION
  • graph
  • fullerene

Fingerprint

Dive into the research topics of 'On the Wiener complexity and the Wiener Index of fullerene graphs'. Together they form a unique fingerprint.

Cite this