Numerical simulation of gas-solid flows in fluidized bed with TFM model

Ronith Stanly, Georgy Shoev, A. Kokhanchik

Research output: Chapter in Book/Report/Conference proceedingConference contributionResearchpeer-review

2 Citations (Scopus)

Abstract

This work evaluates the effectiveness of the Two-Fluid Model (TFM) to simulate gas flows with dense particles by using a simplified Fluidized Bed as a test case. The overarching objective is to check the prediction accuracy of the TFM Model. This document includes the simulations performed using two drag models, namely Gidaspow and Syamlal-O'Brien, using Ansys Fluent 18.1. The bubble evolution as well as the time-averaged volume-fraction distributions have been compared with prior simulations conducted using MFIX, Barracuda and also with experimental data found in literature. Though the low computational requirements and capability to produce reasonable time-averaged results makes TFM a better choice for industrial applications, the low prediction accuracy for the instantaneous quantities often renders it unsuitable for more scientifically demanding studies. Hence, this work aims at a critical evaluation of the TFM model for the specified test problem.

Original languageEnglish
Title of host publicationProceedings of the XXV Conference on High-Energy Processes in Condensed Matter, HEPCM 2017
Subtitle of host publicationDedicated to the 60th Anniversary of the Khristianovich Institute of Theoretical and Applied Mechanics SB RAS
Editors Fomin
PublisherAmerican Institute of Physics Inc.
Number of pages8
Volume1893
ISBN (Electronic)9780735415782
DOIs
Publication statusPublished - 26 Oct 2017
Event25th Conference on High-Energy Processes in Condensed Matter, HEPCM 2017 - Novosibirsk, Russian Federation
Duration: 5 Jun 20179 Jun 2017

Publication series

NameAIP Conference Proceedings
PublisherAMER INST PHYSICS
Volume1893
ISSN (Print)0094-243X

Conference

Conference25th Conference on High-Energy Processes in Condensed Matter, HEPCM 2017
CountryRussian Federation
CityNovosibirsk
Period05.06.201709.06.2017

Keywords

  • COMBUSTION
  • JET

Fingerprint Dive into the research topics of 'Numerical simulation of gas-solid flows in fluidized bed with TFM model'. Together they form a unique fingerprint.

Cite this