Numerical simulation of fluid flow in a rotational bioreactor

V. L. Ganimedov, E. O. Papaeva, N. A. Maslov, P. M. Larionov

Research output: Chapter in Book/Report/Conference proceedingConference contributionResearchpeer-review

4 Citations (Scopus)


Application of scaffold technology for the problem of bone tissue regeneration has great prospects in modern medicine. The influence of fluid shear stress on stem cells cultivation and its differentiation into osteoblasts is the subject of intensive research. Mathematical modeling of fluid flow in bioreactor allowed us to determine the structure of flow and estimate the level of mechanical stress on cells. The series of computations for different rotation frequencies (0.083, 0.124, 0.167, 0.2 and 0.233 Hz) was performed for the laminar flow regime approximation. It was shown that the Taylor vortices in the gap between the cylinders qualitatively change the distribution of static pressure and shear stress in the region of vortices connection. It was shown that an increase in the rotation frequency leads to an increase of the unevenness in distribution of the above mentioned functions. The obtained shear stress and static pressure dependence on the rotational frequency make it possible to choose the operating mode of the reactor depending on the provided requirements. It was shown that in the range of rotation frequencies chosen in this work (0.083 < f < 0.233 Hz), the shear stress does not exceed the known literature data (0.002-0.1 Pa).

Original languageEnglish
Title of host publicationProceedings of the XXV Conference on High-Energy Processes in Condensed Matter, HEPCM 2017
Subtitle of host publicationDedicated to the 60th Anniversary of the Khristianovich Institute of Theoretical and Applied Mechanics SB RAS
Editors Fomin
PublisherAmerican Institute of Physics Inc.
Number of pages7
ISBN (Electronic)9780735415782
Publication statusPublished - 26 Oct 2017
Event25th Conference on High-Energy Processes in Condensed Matter, HEPCM 2017 - Novosibirsk, Russian Federation
Duration: 5 Jun 20179 Jun 2017

Publication series

NameAIP Conference Proceedings
ISSN (Print)0094-243X


Conference25th Conference on High-Energy Processes in Condensed Matter, HEPCM 2017
CountryRussian Federation

Fingerprint Dive into the research topics of 'Numerical simulation of fluid flow in a rotational bioreactor'. Together they form a unique fingerprint.

Cite this