Numerical method for simulation of orientation dynamics of nematic liquid crystals in electromagnetic fields

R. V. Galev, A. N. Kudryavtsev

Research output: Chapter in Book/Report/Conference proceedingConference contributionResearchpeer-review

Abstract

The orientation dynamics of nematic liquid crystals (NLCs) is rotation of the director, i.e. a unit vector representing the preferred direction of orientation of molecules, under the action of elastic forces and an electromagnetic field (EMF). A numerical method for solving the equations of the orientation dynamics is proposed and details of its implementation are discussed. A special attention is paid to coupling of numerical solvers for the orientation dynamics of NLCs and for Maxwell's equations describing the light propagation in an anisotropic non-uniform medium. A numerical solution of the problem of the Fréedericksz transition is compared with its analytical solution, other examples of numerical simulations of physical phenomena in liquid-crystalline media interacting with electromagnetic waves are given.

Original languageEnglish
Title of host publicationHigh-Energy Processes in Condensed Matter, HEPCM 2020
Subtitle of host publicationProceedings of the XXVII Conference on High-Energy Processes in Condensed Matter, Dedicated to the 90th Anniversary of the Birth of RI Soloukhin
EditorsVasily M. Fomin
PublisherAmerican Institute of Physics Inc.
Number of pages6
ISBN (Electronic)9780735440180
DOIs
Publication statusPublished - 26 Oct 2020
Event27th Conference on High-Energy Processes in Condensed Matter, HEPCM 2020 - Novosibirsk, Russian Federation
Duration: 29 Jun 20203 Jul 2020

Publication series

NameAIP Conference Proceedings
Volume2288
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Conference

Conference27th Conference on High-Energy Processes in Condensed Matter, HEPCM 2020
CountryRussian Federation
CityNovosibirsk
Period29.06.202003.07.2020

Keywords

  • LIGHT
  • PROPAGATION

Fingerprint

Dive into the research topics of 'Numerical method for simulation of orientation dynamics of nematic liquid crystals in electromagnetic fields'. Together they form a unique fingerprint.

Cite this