Mono-, bi-, and tri-metallic Ni-based catalysts for the catalytic hydrotreatment of pyrolysis liquids

Wang Yin, Robbie H. Venderbosch, Songbo He, Maria V. Bykova, Sofia A. Khromova, Vadim A. Yakovlev, Hero J. Heeres

    Research output: Contribution to journalArticlepeer-review

    18 Citations (Scopus)

    Abstract

    Catalytic hydrotreatment is a promising technology to convert pyrolysis liquids into intermediates with improved properties. Here, we report a catalyst screening study on the catalytic hydrotreatment of pyrolysis liquids using bi- and tri-metallic nickel-based catalysts in a batch autoclave (initial hydrogen pressure of 140 bar, 350 °C, 4 h). The catalysts are characterized by a high nickel metal loading (41 to 57 wt%), promoted by Cu, Pd, Mo, and/or combination thereof, in a SiO2, SiO2-ZrO2, or SiO2-Al2O3 matrix. The hydrotreatment results were compared with a benchmark Ru/C catalyst. The results revealed that the monometallic Ni catalyst is the least active and that particularly the use of Mo as the promoter is favored when considering activity and product properties. For Mo promotion, a product oil with improved properties viz. the highest H/C molar ratio and the lowest coking tendency was obtained. A drawback when using Mo as the promoter is the relatively high methane yield, which is close to that for Ru/C. 1H, 13C-NMR, heteronuclear single quantum coherence (HSQC), and two-dimensional gas chromatography (GC × GC) of the product oils reveal that representative component classes of the sugar fraction of pyrolysis liquids like carbonyl compounds (aldehydes and ketones and carbohydrates) are converted to a large extent. The pyrolytic lignin fraction is less reactive, though some degree of hydrocracking is observed.

    Original languageEnglish
    Pages (from-to)361-376
    Number of pages16
    JournalBiomass Conversion and Biorefinery
    Volume7
    Issue number3
    DOIs
    Publication statusPublished - 1 Sep 2017

    Keywords

    • Batch autoclave
    • Hydrogenation
    • Nickel-based catalysts
    • Pyrolysis liquids
    • HYDROGENATION
    • WOOD
    • GUAIACOL
    • CU CATALYSTS
    • MODEL COMPOUNDS
    • HYDRODEOXYGENATION
    • NICKEL
    • OIL HYDROTREATMENT
    • AMORPHOUS CATALYSTS
    • LIGNIN

    Fingerprint Dive into the research topics of 'Mono-, bi-, and tri-metallic Ni-based catalysts for the catalytic hydrotreatment of pyrolysis liquids'. Together they form a unique fingerprint.

    Cite this