Abstract
Development of modern intelligent monitoring and control systems in energy, allowing reducing the level of harmful emissions and energy intensity production is relevant. In the scientific literature usage of new efficient machine learning techniques for automatic extraction of features for the classification of combustion regimes is insufficiently covered. In this paper we describe a method for determining combustion regimes based on images of flames. To determine the combustion regimes, a convolutional neural network is trained using labeled data. It is shown that in the gas flame colour images the accuracy of the classification of regimes is up to 98%. Results of the convolutional neural network are compared to classification results of various linear models.
Original language | English |
---|---|
Article number | 012138 |
Number of pages | 6 |
Journal | Journal of Physics: Conference Series |
Volume | 1128 |
Issue number | 1 |
DOIs | |
Publication status | Published - 7 Dec 2018 |
Event | 3rd All-Russian Scientific Conference Thermophysics and Physical Hydrodynamics with the School for Young Scientists, TPH 2018 - Yalta, Crimea, Ukraine Duration: 10 Sep 2018 → 16 Sep 2018 |