Molecular dynamics simulation of shock-wave loading of copper and titanium

A. V. Bolesta, V. M. Fomin

Research output: Chapter in Book/Report/Conference proceedingConference contributionResearchpeer-review

3 Citations (Scopus)

Abstract

At extreme pressures and temperatures common materials form new dense phases with compacted atomic arrangements. By classical molecular dynamics simulation we observe that FCC copper undergo phase transformation to BCC structure. The transition occurs under shock wave loading at the pressures above 80 GPa and corresponding temperatures above 2000 K. We calculate phase diagram, show that at these pressures and low temperature FCC phase of copper is still stable and discuss the thermodynamic reason for phase transformation at high temperature shock wave regime. Titanium forms new hexagonal phase at high pressure as well. We calculate the structure of shock wave in titanium and observe that shock front splits in three parts: elastic, plastic and phase transformation. The possibility of using a phase transition behind a shock wave with further unloading for designing nanocrystalline materials with a reduced grain size is also shown.

Original languageEnglish
Title of host publicationProceedings of the XXV Conference on High-Energy Processes in Condensed Matter, HEPCM 2017
Subtitle of host publicationDedicated to the 60th Anniversary of the Khristianovich Institute of Theoretical and Applied Mechanics SB RAS
Editors Fomin
PublisherAmerican Institute of Physics Inc.
Number of pages4
Volume1893
ISBN (Electronic)9780735415782
DOIs
Publication statusPublished - 26 Oct 2017
Event25th Conference on High-Energy Processes in Condensed Matter, HEPCM 2017 - Novosibirsk, Russian Federation
Duration: 5 Jun 20179 Jun 2017

Publication series

NameAIP Conference Proceedings
PublisherAMER INST PHYSICS
Volume1893
ISSN (Print)0094-243X

Conference

Conference25th Conference on High-Energy Processes in Condensed Matter, HEPCM 2017
CountryRussian Federation
CityNovosibirsk
Period05.06.201709.06.2017

Keywords

  • POLYCRYSTALLINE COPPER

Fingerprint

Dive into the research topics of 'Molecular dynamics simulation of shock-wave loading of copper and titanium'. Together they form a unique fingerprint.

Cite this