Mathematical models of swirling turbulent jet flows

G. G. Chernykh, A. G. Demenkov, S. N. Yakovenko

Research output: Chapter in Book/Report/Conference proceedingConference contributionResearchpeer-review

Abstract

The system of averaged equations of motion, continuity, and transport equations for normal Reynolds stresses and dissipation rate of turbulent kinetic energy is employed in the thin shear layer approximation to describe a flow in swirling turbulent jets. The turbulent shear stresses are determined from the non-equilibrium algebraic relations of Rodi. The numerical realization of the model is based on the application of a finite-difference algorithm on moving grids, preserving the laws of momentum and angular momentum conservation. As an example to model a swirling turbulent jet, numerical simulation of swirling turbulent wake flows with varied total momentum and angular momentum is performed. A modification of diffusion terms in the transport equations is considered, based on the improved algebraic Ilyushin approximations of third-order moments that take into account the flow swirl. The computation results are in satisfactory agreement with the known experimental data of Lavrentyev Institute of Hydrodynamics of the Siberian Branch of the Russian Academy of Sciences (LIH SB RAS). A numerical analysis of the self-similarity of decay for the far turbulent wake with zero excess momentum and nonzero angular momentum is made. The computation results for swirling turbulent wake behind a towed sphere are presented.

Original languageEnglish
Title of host publication19th International Conference on the Methods of Aerophysical Research, ICMAR 2018
Editors Fomin
PublisherAmerican Institute of Physics Inc.
Number of pages8
Volume2027
ISBN (Electronic)9780735417472
DOIs
Publication statusPublished - 2 Nov 2018
Event19th International Conference on the Methods of Aerophysical Research, ICMAR 2018 - Akademgorodok, Novosibirsk, Russian Federation
Duration: 13 Aug 201819 Aug 2018

Publication series

NameAIP Conference Proceedings
PublisherAMER INST PHYSICS
Volume2027
ISSN (Print)0094-243X

Conference

Conference19th International Conference on the Methods of Aerophysical Research, ICMAR 2018
CountryRussian Federation
CityAkademgorodok, Novosibirsk
Period13.08.201819.08.2018

Keywords

  • WAKE

Fingerprint

Dive into the research topics of 'Mathematical models of swirling turbulent jet flows'. Together they form a unique fingerprint.

Cite this