Mantle-Crust Interaction in Petrogenesis of the Gabbro-Granite Association in the Preobrazhenka Intrusion, Eastern Kazakhstan

S. V. Khromykh, A. A. Tsygankov, G. N. Burmakina, P. D. Kotler, E. N. Sokolova

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)

Abstract

The paper reports results of petrological-geochemical, isotope, and geochronological studies of the Preobrazhenka gabbro–granitoid massif located in the Altai collisional system of Hercynides, Eastern Kazakhstan. The massif shows evidence for the interaction of compositionally contrasting magmas during its emplacement. Mineralogical–petrological and geochemical studies indicate that the gabbroid rocks of the massif were formed through differentiation of primary trachybasaltic magma and its interaction with crustal anatectic melts. Origin of the granitoid rocks is related to melting of crustal protoliths under the thermal effect of mafic melts. The mantle–crust interaction occurred in several stages and at different depths. A model proposed here to explain the intrusion formation suggests subsequent emplacement of basite magmas in lithosphere and their cooling, melting of crustal protolith, emplacement at the upper crustal levels and cooling of the granitoid and basite magmas. It was concluded that the formation of gabbro-granitoid intrusive massifs serves as an indicator of active mantle–crust interaction at the late evolutionary stages of accretionary–collisional belts, when strike-slip pull-apart deformations causes the high permeability of lithosphere.

Original languageEnglish
Pages (from-to)368-388
Number of pages21
JournalPetrology
Volume26
Issue number4
DOIs
Publication statusPublished - 1 Jul 2018

Keywords

  • Central Asia
  • Eastern Kazakhstan
  • gabbro-granitoid intrusions
  • Late Paleozoic
  • mantle-crust interaction
  • Tarim mantle plume

Fingerprint Dive into the research topics of 'Mantle-Crust Interaction in Petrogenesis of the Gabbro-Granite Association in the Preobrazhenka Intrusion, Eastern Kazakhstan'. Together they form a unique fingerprint.

Cite this