Magnetic Properties of 1D Iron–Sulfur Compounds Formed Inside Single-Walled Carbon Nanotubes

Alexander V. Okotrub, Alexander I. Chernov, Alexander N. Lavrov, Olga A. Gurova, Yury V. Shubin, Yuri N. Palyanov, Yuri M. Borzdov, Anatoly K. Zvezdin, Erkki Lähderanta, Lyubov G. Bulusheva, Olga V. Sedelnikova

Research output: Contribution to journalArticlepeer-review

Abstract

Herein, the filling of single-walled carbon nanotubes (SWCNTs) with sulfur is performed, and the magnetic properties of the formed nanomaterials are studied. Encapsulation of sulfur species results in the appearance of a specific magnetic ordering in the system due to the formation of nanoscopic grains composed of sulfur and residual catalytic Fe nanoparticles contained in the SWCNTs. The magnetic character of the obtained 1D nanostructures is studied using superconducting quantum interference device (SQUID) magnetometer and a sequential ferromagnetic–antiferromagnetic ordering in the material is revealed. Magnetic and optical properties are strongly dependent on the synthesis protocols. A significant Raman intensity increase related to the encapsulated nanostructures is obtained when filling is performed at high-pressure high-temperature conditions. Simultaneously, the magnetic susceptibility gets strongly reduced for high-pressure filling, which is related to the escape of iron particles from the nanotube interior, and the magnetic properties of the material are governed by a weak ferromagnetic ordering of Fe–S structures remained inside SWCNTs. Sulfur encapsulation provides the new route for controlling the magnetic properties in 1D nanomaterials that pave the way for advanced magneto-optical applications.

Original languageEnglish
Article number2000291
Number of pages8
JournalPhysica Status Solidi - Rapid Research Letters
Volume14
Issue number10
DOIs
Publication statusPublished - 1 Oct 2020

Keywords

  • antiferromagnetism
  • single-walled carbon nanotube encapsulation
  • single-walled carbon nanotubes
  • sulfur compounds
  • SYSTEM
  • PYRITE FES2
  • ENERGY
  • ENCAPSULATION
  • SIZE
  • GRAPHENE NANORIBBON
  • IMPACT
  • ENHANCEMENT
  • GROWTH

Fingerprint Dive into the research topics of 'Magnetic Properties of 1D Iron–Sulfur Compounds Formed Inside Single-Walled Carbon Nanotubes'. Together they form a unique fingerprint.

Cite this