Abstract
The luminescence properties of arrays of spatially ordered self-assembled solitary Ge(Si) nanoislands and their groups, including those embedded in two-dimensional photonic crystals, are studied. It is shown that the incorporation of an array of ordered solitary Ge(Si) islands and their groups into photonic crystals results in an increase in the intensity of their photoluminescence signal at liquid-nitrogen temperature. The maximum increase in the intensity (by a factor of up to ~30) is observed for an ordered array of solitary Ge(Si) islands. The increase in the intensity is attributed to the interaction of emission from islands with photonic-crystal radiative modes. This interaction is more efficient in the case of an array of solitary islands. Due to such interaction the luminescence signal from ordered solitary Ge(Si) islands incorporated into photonic crystals is observed at up to room temperature.
Original language | English |
---|---|
Pages (from-to) | 853-859 |
Number of pages | 7 |
Journal | Semiconductors |
Volume | 54 |
Issue number | 8 |
DOIs | |
Publication status | Published - 1 Aug 2020 |
Keywords
- luminescence
- photonic crystal
- quantum dots
- SiGe heterostructures
- spatial ordering
- PHOTOLUMINESCENCE
- SINGLE
- ISLANDS
- DRIVEN
- EMISSION
- ELECTROLUMINESCENCE
- QUANTUM DOTS