Local well-posedness in the problem of flow about infinite plane wedge with inviscous non-heat-conducting gas

Research output: Chapter in Book/Report/Conference proceedingConference contributionResearchpeer-review

Abstract

We study the problem for a supersonic stationary van der Waals gas flow onto a planar infinite wedge. For the case when the basic solution is a weak shock wave, i.e. the gas velocity behind the shock front is supersonic, we prove the local-in-time well-posedness of the corresponding nonstationary problem.

Original languageEnglish
Title of host publicationPROCEEDINGS OF THE INTERNATIONAL CONFERENCE DAYS ON DIFFRACTION (DD) 2017
EditorsOV Motygin, AP Kiselev, LI Goray, TA Suslina, AY Kazakov, AS Kirpichnikova
PublisherIEEE Canada
Pages62-67
Number of pages6
Publication statusPublished - Jun 2017
EventInternational Conference on Days on Diffraction (DD) - St Petersburg
Duration: 19 Jun 201723 Jun 2017

Conference

ConferenceInternational Conference on Days on Diffraction (DD)
CitySt Petersburg
Period19.06.201723.06.2017

Keywords

  • SHOCK-WAVES
  • STABILITY

Cite this

Blokhin, A. M., & Tkachev, D. L. (2017). Local well-posedness in the problem of flow about infinite plane wedge with inviscous non-heat-conducting gas. In OV. Motygin, AP. Kiselev, LI. Goray, TA. Suslina, AY. Kazakov, & AS. Kirpichnikova (Eds.), PROCEEDINGS OF THE INTERNATIONAL CONFERENCE DAYS ON DIFFRACTION (DD) 2017 (pp. 62-67). IEEE Canada.