Large-scale and localized laser crystallization of optically thick amorphous silicon films by near-IR femtosecond pulses

Kirill Bronnikov, Alexander Dostovalov, Artem Cherepakhin, Eugeny Mitsai, Alexander Nepomniaschiy, Sergei A. Kulinich, Alexey Zhizhchenko, Aleksandr Kuchmizhak

Research output: Contribution to journalArticlepeer-review

Abstract

Amorphous silicon (α-Si) film present an inexpensive and promising material for optoelectronic and nanophotonic applications. Its basic optical and optoelectronic properties are known to be improved via phase transition from amorphous to polycrystalline phase. Infrared femtosecond laser radiation can be considered to be a promising nondestructive and facile way to drive uniform in-depth and lateral crystallization of α-Si films that are typically opaque in UV-visible spectral range. However, so far only a few studies reported on use of near-IR radiation for laser-induced crystallization of α-Si providing less information regarding optical properties of the resultant polycrystalline Si films demonstrating rather high surface roughness. The present work demonstrates efficient and gentle single-pass crystallization of α-Si films induced by their direct irradiation with near-IR femtosecond laser pulses coming at sub-MHz repetition rate. Comprehensive analysis of morphology and composition of laser-annealed films by atomic-force microscopy, optical, micro-Raman and energy-dispersive X-ray spectroscopy, as well as numerical modeling of optical spectra, confirmed efficient crystallization of α-Si and high-quality of the obtained films. Moreover, we highlight localized laser-induced crystallization of α-Si as a promising way for optical information encryption, anti-counterfeiting and fabrication of micro-optical elements.

Original languageEnglish
Article number5296
Pages (from-to)1-10
Number of pages10
JournalMaterials
Volume13
Issue number22
DOIs
Publication statusPublished - 2 Nov 2020

Keywords

  • Amorphous silicon
  • Femtosecond laser pulses
  • Laser-induced annealing
  • Polycrystalline silicon
  • Raman spectroscopy
  • Thin films
  • amorphous silicon
  • laser-induced annealing
  • SOLAR-CELLS
  • femtosecond laser pulses
  • polycrystalline silicon
  • thin films
  • GLASS
  • SI

Fingerprint Dive into the research topics of 'Large-scale and localized laser crystallization of optically thick amorphous silicon films by near-IR femtosecond pulses'. Together they form a unique fingerprint.

Cite this