Labyrinth Metasurface Absorber for Ultra-High-Sensitivity Terahertz Thin Film Sensing

Irati Jáuregui-López, Pablo Rodríguez-Ulibarri, Aitor Urrutia, Sergei A. Kuznetsov, Miguel Beruete

Research output: Contribution to journalLetterpeer-review

16 Citations (Scopus)


In this work, a labyrinth metasurface sensor operating at the low-frequency edge of the THz band is presented. Its intricate shape leads to a high electric field confinement on the surface of the structure, resulting in ultrasensitive performance, able to detect samples of the order of tens of nanometers at a wavelength of the order of millimeters (i.e., five orders of magnitude larger). The sensing capabilities of the labyrinth metasurface are evaluated numerically and experimentally by covering the metallic face with tin dioxide (SnO2) thin films with thicknesses ranging from 24 to 345 nm. A redshift of the resonant frequency is observed as the analyte thickness increases, until reaching a thickness of 20 μm, where the response saturates. A maximum sensitivity of more than 800 and a figure of merit near 4500 nm−1 are achieved, allowing discriminating differences in the SnO2 thickness of less than 25 nm, and improving previous works by a factor of 35. This result can open a new paradigm of ultrasensitive devices based on intricate metageometries overcoming the limitations of classical metasurface sensor designs based on periodic metaatoms.

Original languageEnglish
Article number1800375
Number of pages7
JournalPhysica Status Solidi - Rapid Research Letters
Issue number10
Publication statusPublished - 1 Oct 2018


  • metasurfaces
  • sensing
  • terahertz
  • thin film


Dive into the research topics of 'Labyrinth Metasurface Absorber for Ultra-High-Sensitivity Terahertz Thin Film Sensing'. Together they form a unique fingerprint.

Cite this