Laboratory modeling of flow regimes in a draft tube of Francis hydro-turbine

Sergey Shtork, Ivan Litvinov, Andrey Mitryakov, Kemal Hanjalic

Research output: Chapter in Book/Report/Conference proceedingConference contributionResearchpeer-review

Abstract

The paper reports on some results of the experimental study of flow and pressure pulsations in a laboratory model of the draft tube (DT) of Francis-99 hydro-turbine over a broad range of operating regimes. Velocity distributions at the model inlet varied within 866 modes of the turbine load conditions, including those with maximum coherent pressure pulsations on the model walls. The contact and non-contact methods were used to measure pressure pulsations on the model walls using acoustic sensors and to measure the averaged velocity distribution with a laser Doppler anemometer "LAD-06i". Analysis of the results have showed that in the model cone there are flow modes with forming of precessing vortex cores, accompanied by a sharp increase in the amplitude of coherent pressure pulsations on the wall and the velocity field rearrangement. It is shown that the vortex core starts forming with an increase in the integral parameter of swirl up to S>0.5. A novelty of the work is the combination of the rapid prototyping (3-d printing) of the inflow swirl generators and computerized measurement techniques that makes it possible to acquire rapidly a large amount of experimental data for a variety of designs and operating conditions. The results can provide insight into the effect of various design and operating parameters on the flow physics, as well as serve for verification of the numerical simulations.

Original languageEnglish
Title of host publicationEXPERIMENTAL FLUID MECHANICS 2016 (EFM16 )
EditorsP Dancova
PublisherUniversity of Lueneburg, Department of Economics and Social Sciences, Research Institute on Professions
Number of pages5
DOIs
Publication statusPublished - 2017
Event11th International Conference on Experimental Fluid Mechanics (EFM) - Marienbad, Czech Republic
Duration: 15 Nov 201618 Nov 2016

Publication series

NameEPJ Web of Conferences
PublisherE D P SCIENCES
Volume143
ISSN (Print)2100-014X

Conference

Conference11th International Conference on Experimental Fluid Mechanics (EFM)
CountryCzech Republic
CityMarienbad
Period15.11.201618.11.2016

Cite this