Investigation of cellular detonation structure formation via linear stability theory and 2D and 3D numerical simulations

S. P. Borisov, A. N. Kudryavtsev

Research output: Chapter in Book/Report/Conference proceedingConference contributionResearchpeer-review

3 Citations (Scopus)

Abstract

Linear and nonlinear stages of the instability of a plane detonation wave (DW) and the subsequent process of formation of cellular detonation structure are investigated. A simple model with one-step irreversible chemical reaction is used. The linear analysis is employed to predict the DW front structure at the early stages of its formation. An emerging eigenvalue problem is solved with a global method using a Chebyshev pseudospectral method and the LAPACK software library. A local iterative shooting procedure is used for eigenvalue refinement. Numerical simulations of a propagation of a DW in plane and rectangular channels are performed with a shock capturing WENO scheme of 5th order. A special method of a computational domain shift is implemented in order to maintain the DW in the domain. It is shown that the linear analysis gives certain predictions about the DW structure that are in agreement with the numerical simulations of early stages of DW propagation. However, at later stages, a merger of detonation cells occurs so that their number is approximately halved. Computations of DW propagation in a square channel reveal two different types of spatial structure of the DW front, "rectangular" and "diagonal" types. A spontaneous transition from the rectangular to diagonal type of structure is observed during propagation of the DW.

Original languageEnglish
Title of host publicationProceedings of the XXV Conference on High-Energy Processes in Condensed Matter, HEPCM 2017
Subtitle of host publicationDedicated to the 60th Anniversary of the Khristianovich Institute of Theoretical and Applied Mechanics SB RAS
Editors Fomin
PublisherAmerican Institute of Physics Inc.
Number of pages11
Volume1893
ISBN (Electronic)9780735415782
DOIs
Publication statusPublished - 26 Oct 2017
Event25th Conference on High-Energy Processes in Condensed Matter, HEPCM 2017 - Novosibirsk, Russian Federation
Duration: 5 Jun 20179 Jun 2017

Publication series

NameAIP Conference Proceedings
PublisherAMER INST PHYSICS
Volume1893
ISSN (Print)0094-243X

Conference

Conference25th Conference on High-Energy Processes in Condensed Matter, HEPCM 2017
CountryRussian Federation
CityNovosibirsk
Period05.06.201709.06.2017

Keywords

  • ONE-DIMENSIONAL DETONATIONS
  • HETEROGENEOUS DETONATION
  • DIAGONAL STRUCTURES
  • PARTICLES
  • ALUMINUM
  • OXYGEN

Fingerprint Dive into the research topics of 'Investigation of cellular detonation structure formation via linear stability theory and 2D and 3D numerical simulations'. Together they form a unique fingerprint.

Cite this