Abstract
The article is devoted to the study of problems of finding the non-negative coefficient q(t) in the elliptic equation utt + a2∆u − q(t)u = f(x, t) (x = (x1, …, xn) ∈ Ω ⊂ ℝn, t ∈ (0, T ), 0 < T < +∞, ∆ — operator Laplace on x1, …, xn). These problems contain the usual boundary conditions and additional condition ( spatial integral overdetermination condition or boundary integral overdetermination condition). The theorems of existence and uniqueness are proved.
Translated title of the contribution | Обратные задачи восстановления младшего коэффициента в эллиптическом уравнении |
---|---|
Original language | English |
Article number | 15 |
Pages (from-to) | 528-542 |
Number of pages | 15 |
Journal | Journal of Siberian Federal University - Mathematics and Physics |
Volume | 14 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2021 |
Keywords
- Boundary integral condition
- Elliptic equation
- Existence
- Spatial integral condition
- Uniqueness
- Unknown coefficient
OECD FOS+WOS
- 1.01 MATHEMATICS
State classification of scientific and technological information
- 27 MATHEMATICS