Inhibition of premixed flames of methyl methacrylate by trimethylphosphate

D. A. Knyazkov, T. A. Bolshova, V. M. Shvartsberg, A. A. Chernov, O. P. Korobeinichev

Research output: Contribution to journalConference articlepeer-review

1 Citation (Scopus)

Abstract

In the present paper, the laminar burning velocity and structure of near-stoichiometric premixed laminar flames of methyl methacrylate (MMA) with and without trimethylphosphate (TMP) additives have been studied experimentally and by numerical modeling. The MMA + TMP combustion system is considered as a model system, which simulates gas-phase combustion of polymethyl methacrylate (PMMA) with additive of phosphorus-containing fire retardants (PFRs). The motivation of the present research is to provide a basis for development of a predictive gas-phase chemical kinetic model for inhibition of PMMA by PFRs. The flame sampling molecular beam mass spectrometry was used to determine the spatial variation of the mole fractions of H, OH, PO, PO2 , HOPO, HOPO2 and some intermediate hydrocarbons in the one-dimensional burner-stabilized flames. The effect of TMP on the hydrocarbon intermediates in the flames is investigated. The reaction mechanism for combustion of MMA + TMP system has been validated against the novel laminar burning velocity and chemical speciation data. Performances and deficiencies of the kinetic mechanism for MMA flame inhibition are discussed. The sensitivity analysis showed that the insufficiently accurate prediction of mole fraction of H, O and OH results in disagreement for mole fraction profiles of hydrocarbon intermediates in the inhibited flame. Inhibition effectiveness of MMA flame by TMP is compared with that derived from experimental data for other fuels and the observed tendencies are discussed.

Original languageEnglish
Pages (from-to)4625-4633
Number of pages9
JournalProceedings of the Combustion Institute
Volume38
Issue number3
Early online date28 Jul 2020
DOIs
Publication statusPublished - 2021

Keywords

  • Laminar burning velocity
  • Methyl methacrylate
  • Organophosphorus compounds
  • Premixed flame
  • Trimethylphosphate

OECD FOS+WOS

  • 2.03.DT THERMODYNAMICS
  • 2.07.ID ENERGY & FUELS
  • 2.04.II ENGINEERING, CHEMICAL
  • 2.03.IU ENGINEERING, MECHANICAL

Fingerprint

Dive into the research topics of 'Inhibition of premixed flames of methyl methacrylate by trimethylphosphate'. Together they form a unique fingerprint.

Cite this