High-pressure high-temperature stability of hcp-IrxOs1−x(x = 0.50 and 0.55) alloys

Kirill V. Yusenko, Elena Bykova, Maxim Bykov, Sergey A. Gromilov, Alexander V. Kurnosov, Clemens Prescher, Vitali B. Prakapenka, Wilson A. Crichton, Michael Hanfland, Serena Margadonna, Leonid S. Dubrovinsky

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)

Abstract

Hcp-Ir0.55Os0.45and hcp-Ir0.50Os0.50alloys were synthesised by thermal decomposition of single-source precursors in hydrogen atmosphere. Both alloys correspond to a miscibility gap in the Ir–Os binary phase diagram and therefore are metastable at ambient conditions. An in situ powder X-ray diffraction has been used for a monitoring a formation of hcp-Ir0.55Os0.45alloy from (NH4)2[Ir0.55Os0.45Cl6] precursor. A crystalline intermediate compound and nanodimentional metallic particles with a large concentration of defects has been found as key intermediates in the thermal decomposition process in hydrogen flow. High-temperature stability of titled hcp-structured alloys has been investigated upon compression up to 11 GPa using a multi-anvil press and up to 80 GPa using laser-heated diamond-anvil cells to obtain a phase separation into fcc + hcp mixture. Compressibility curves at room temperature as well as thermal expansion at ambient pressure and under compression up to 80 GPa were collected to obtain thermal expansion coefficients and bulk moduli. hcp-Ir0.55Os0.45alloy shows bulk moduli B0 = 395 GPa. Thermal expansion coefficients were estimated as α = 1.6·10−5 K−1at ambient pressure and α = 0.3·10−5 K−1at 80 GPa. Obtained high-pressure high-temperature data allowed us to construct the first model for pressure-dependent Ir–Os phase diagram.

Original languageEnglish
Pages (from-to)198-207
Number of pages10
JournalJournal of Alloys and Compounds
Volume700
DOIs
Publication statusPublished - 5 Apr 2017

Keywords

  • Alloys
  • High-pressure
  • High-temperature
  • Iridium
  • Osmium
  • SYSTEM
  • RAY-ABSORPTION SPECTROSCOPY
  • IRIDIUM
  • CRYSTAL-STRUCTURE
  • SOLID-SOLUTIONS
  • NOBLE-METALS
  • THERMAL-DECOMPOSITION
  • PHASE-TRANSFORMATIONS
  • OSMIUM
  • ABSOLUTE-ZERO

Fingerprint Dive into the research topics of 'High-pressure high-temperature stability of hcp-Ir<sub>x</sub>Os<sub>1−x</sub>(x = 0.50 and 0.55) alloys'. Together they form a unique fingerprint.

Cite this