Generating and sustaining long-lived spin states in 15N,15N′-azobenzene

Kirill F. Sheberstov, Hans Martin Vieth, Herbert Zimmermann, Bogdan A. Rodin, Konstantin L. Ivanov, Alexey S. Kiryutin, Alexandra V. Yurkovskaya

Research output: Contribution to journalArticlepeer-review

Abstract

Long-Lived spin States (LLSs) hold a great promise for sustaining non-thermal spin order and investigating various slow processes by Nuclear Magnetic Resonance (NMR) spectroscopy. Of special interest for such application are molecules containing nearly equivalent magnetic nuclei, which possess LLSs even at high magnetic fields. In this work, we report an LLS in trans-15N,15N′-azobenzene. The singlet state of the 15N spin pair exhibits a long-lived character. We solve the challenging problem of generating and detecting this LLS and further increase the LLS population by converting the much higher magnetization of protons into the 15N singlet spin order. As far as the longevity of this spin order is concerned, various schemes have been tested for sustaining the LLS. Lifetimes of 17 minutes have been achieved at 16.4 T, a value about 250 times longer than the longitudinal relaxation time of 15N in this magnetic field. We believe that such extended relaxation times, along with the photochromic properties of azobenzene, which changes conformation upon light irradiation and can be hyperpolarized by using parahydrogen, are promising for designing new experiments with photo-switchable long-lived hyperpolarization.

Original languageEnglish
Article number20161
Number of pages11
JournalScientific Reports
Volume9
Issue number1
DOIs
Publication statusPublished - 27 Dec 2019

Keywords

  • SINGLET ORDER
  • SOLUTION NMR
  • MAGNETIC-FIELD
  • PARAHYDROGEN
  • DIFFUSION
  • HYPERPOLARIZATION
  • SPECTROSCOPY
  • CONSTRAINTS
  • CONVERSION
  • HYDROGEN

Fingerprint Dive into the research topics of 'Generating and sustaining long-lived spin states in <sup>15</sup>N,<sup>15</sup>N′-azobenzene'. Together they form a unique fingerprint.

Cite this