Fluorinated graphene suspension for flexible and printed electronics: Flakes, 2D films, and heterostructures

Irina V. Antonova, Irina I. Kurkina, Anton K. Gutakovskii, Igor A. Kotin, Artem I. Ivanov, Nadezhda A. Nebogatikova, Regina A. Soots, Svetlana A. Smagulova

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)

Abstract

Fluorinated graphene (FG), the most stable derivative of graphene, is suggested for the role of functional material (weak fluorination degree) and the dielectric layers for graphene and other 2D materials, especially for flexible and printed electronics. The main findings discussed in the present study are (1) an excellent mechanical properties of FG in bending conditions for the first time measured for FG with different fluorination degree; (2) the 97-99% transparency of FG films with thickness up to 25 nm in wide range of wave lengths, (3) a ultra low leakage current and a high breakdown field in the printed cross-bar structures; (4) a smooth increase in interplanar spacing by 1-2% from the center of few-layered fluorinated graphene flakes to their edges; (5) observation of only C-C related G line without defect related D line in Raman spectra in the case of giant amplification of Raman scattering for FG films printed at Ag layers. Unchanged characteristics of fluorinated graphene films up to stretching-strain values of 2.5-4% were demonstrated. Generally, it can be stated that fluorinated graphene films have great promise in flexible and printed electronics. (C) 2018 Published by Elsevier Ltd.

Original languageEnglish
Article number107526
Number of pages11
JournalMaterials and Design
Volume164
DOIs
Publication statusPublished - 15 Feb 2019

Keywords

  • 2D printing techniques
  • FG flexibility
  • Fluorinated graphene
  • Heterostructures
  • HREM
  • REDUCTION
  • RAMAN
  • LAYER
  • FIELD-EFFECT TRANSISTORS
  • FLUOROGRAPHENE
  • FLUORIDE

OECD FOS+WOS

  • 2.05 MATERIALS ENGINEERING

Fingerprint

Dive into the research topics of 'Fluorinated graphene suspension for flexible and printed electronics: Flakes, 2D films, and heterostructures'. Together they form a unique fingerprint.

Cite this