Experimental studying of local characteristics of gas-liquid flow in microchannels by optical methods

German V. Bartkus, Vladimir V. Kuznetsov

Research output: Chapter in Book/Report/Conference proceedingConference contributionResearchpeer-review

3 Citations (Scopus)

Abstract

The local characteristics of the gas-liquid two-phase flow in rectangular microchannels 420 × 280 μm and 395 × 205 μm with T-shaped mixer inlet were experimentally investigated in this work. Visualization of flow regimes and measurement of local characteristics were carried out using a high-speed video camera Optronis CX600x2 and laser-induced fluorescence (LIF) method. Deionized water and ethanol were used as the liquid phase, and nitrogen - as the gas phase. The Rhodamine 6G dye was added to the liquid. The location of the microchannel in space (horizontal, vertical) was changed. The profiles of the liquid film along the long side of the microchannel were obtained, the local film thickness was measured in the channel's central section for the elongated bubble flow and the transition flow of the deionized water-nitrogen mixture. The unevenness of liquid film thickness at the channel cross-section and along the bubble was experimentally shown. The temporal dynamics of two-phase flow for the ethanol-nitrogen mixture was shown. It was found that most of the liquid flows in the meniscus on the short side of the microchannel for the present gas and liquid flow rates.

Original languageEnglish
Title of host publicationXV All-Russian Seminar "Dynamics of Multiphase Media", DMM 2017
Editors Fomin
PublisherAmerican Institute of Physics Inc.
Number of pages6
Volume1939
ISBN (Electronic)9780735416246
DOIs
Publication statusPublished - 28 Mar 2018
Event15th All-Russian Seminar on Dynamics of Multiphase Media, DMM 2017 - Novosibirsk, Russian Federation
Duration: 3 Oct 20175 Oct 2017

Publication series

NameAIP Conference Proceedings
PublisherAMER INST PHYSICS
Volume1939
ISSN (Print)0094-243X

Conference

Conference15th All-Russian Seminar on Dynamics of Multiphase Media, DMM 2017
CountryRussian Federation
CityNovosibirsk
Period03.10.201705.10.2017

Keywords

  • BOILING HEAT-TRANSFER

Fingerprint

Dive into the research topics of 'Experimental studying of local characteristics of gas-liquid flow in microchannels by optical methods'. Together they form a unique fingerprint.

Cite this