Experimental study on diffusion combustion of high-speed hydrogen round microjets

V. V. Kozlov, G. R. Grek, G. V. Kozlov, Yu A. Litvinenko, A. G. Shmakov

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)

Abstract

Experimental data on the phenomenon of nozzle choking at diffusion combustion of a high-speed hydrogen microjet at its ignition close to the nozzle are presented. As is found, such a phenomenon is due to the nozzle heating by the «bottleneck flame region» which is generated at the origin of microjet. This flow region persists up to transonic velocities of the microjet preventing from cooling of the nozzle and the transition to supersonic speed. In the case of hydrogen ignition far from the nozzle exit in supersonic conditions, the «bottleneck flame region» is suppressed, the flame becomes detached from the nozzle which is no longer heated so that the supersonic range is attained. The subsonic combustion of hydrogen microjet is stabilized by the «bottleneck flame region» while the supersonic one becomes more stable at the generation of shock cells. The results of the present study provide new details on the combustion of hydrogen microjets and could by useful for the operation of different burners.

Original languageEnglish
Pages (from-to)457-468
Number of pages12
JournalInternational Journal of Hydrogen Energy
Volume44
Issue number1
DOIs
Publication statusPublished - 1 Jan 2019

Keywords

  • Diffusion combustion
  • Heating of a nozzle
  • Round hydrogen microjet
  • Thick-walled micronozzle
  • «flame bottleneck» region
  • << flame bottleneck >> region

Fingerprint

Dive into the research topics of 'Experimental study on diffusion combustion of high-speed hydrogen round microjets'. Together they form a unique fingerprint.

Cite this