Experimental evidences of non-hermitian mode-locking in fibre laser

A. G. Kuznetsov, I. D. Vatnik, A. M. Perego, D. V. Churkin, K. Staliunas

Research output: Chapter in Book/Report/Conference proceedingConference contributionResearchpeer-review

Abstract

Mode-locking (ML) is an established technique used to generate high power, ultrashort (ranging from ps to few fs duration) coherent light pulses in lasers. Mode-locking techniques could be classified into two broad categories. First one is passive mode-locking techniques in which modes are locked through dynamical intracavity self-organization processes not requiring extra energy sources. Another one is active mode-locking where locking between cavity modes is induced by external energy source. Active mode-locking could be either amplitude mode-locking (AML), for example achieved by a periodic (in time) modulation of the loss coefficient, or phase mode-locking (PML), for example via periodical modulation of the length/detuning of the cavity. In amplitude mode-locking periodic forcing induces synchronization of the cavity modes symmetrically coupled to the closest neighbors due to the action of the modulator: the spectrum broadens symmetrically, resulting in coherent frequency comb centered at the middle of the gain line, see Fig.1a.

Original languageEnglish
Title of host publicationEuropean Quantum Electronics Conference, EQEC_2019
PublisherOSA - The Optical Society
ISBN (Electronic)9781557528209
Publication statusPublished - 1 Jan 2019
EventEuropean Quantum Electronics Conference, EQEC_2019 - Munich, United Kingdom
Duration: 23 Jun 201927 Jun 2019

Publication series

NameOptics InfoBase Conference Papers
VolumePart F143-EQEC 2019

Conference

ConferenceEuropean Quantum Electronics Conference, EQEC_2019
CountryUnited Kingdom
CityMunich
Period23.06.201927.06.2019

Fingerprint Dive into the research topics of 'Experimental evidences of non-hermitian mode-locking in fibre laser'. Together they form a unique fingerprint.

Cite this