Energy budget and optical theorem for scattering of source-induced fields

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

We provide rigorous definitions of various components of the energy budget for scattering of source-induced electromagnetic fields by a finite nonmagnetic object. We use the classical volume-integral-equation (VIE) framework and define power rates in terms of integrals of the Poynting vector over various surfaces, enclosing some or all of the impressed sources, scatterer, and environment (such as a planar multilayered substrate). Thus, we generalize the conventional cross sections and obtain new interrelations analogous to the well-known optical theorem. We rigorously treat the strong singularity of the VIE kernel, but keep derivations accessible to a wide audience. The defined power rates are further related to the decay rate enhancement and apparent quantum yield of an arbitrary emitter, which are the core concepts in nanophotonics, surface-enhanced Raman scattering, and electron energy-loss spectroscopy. We also discuss the practical calculation of the power rates and decay rate enhancements in the framework of the discrete dipole approximation (DDA). In particular, we derive the volume-integral expression for the scattered power and use it to prove the automatic satisfaction of the optical theorem irrespective of the discretization level. Thus, the optical theorem cannot be used as an internal measure of the DDA accuracy.

Original languageEnglish
Article number053824
Number of pages16
JournalPhysical Review A
Volume99
Issue number5
DOIs
Publication statusPublished - 16 May 2019

    Fingerprint

Keywords

  • DISCRETE-DIPOLE APPROXIMATION
  • INTEGRAL-EQUATION FORMULATION
  • ELECTROMAGNETIC SCATTERING
  • IMPRESSED SOURCES
  • LIGHT-SCATTERING
  • FINITE OBJECT
  • SPECTROSCOPY
  • PROPAGATION
  • EMISSION
  • MODES

Cite this