Dynamics of nanosecond-laser-induced melting of tin in vacuum, air, and water

Sergey V. Starinskiy, Alexey A. Rodionov, Yuri G. Shukhov, Evgeniy A. Maximovskiy, Alexander V. Bulgakov

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

Tin with its low melting point and vapor pressure is a good model material to investigate laser ablation mechanisms under various ambient conditions. Here we measured the nanosecond-laser-induced damage thresholds of tin in vacuum, air, and water. The threshold fluence is found to be ~ 0.1 J/cm2 regardless of the environment unlike more refractory metals when threshold values in water are considerably higher than those in air. Analysis of the morphology and chemical composition of the irradiated surface as well as numerical simulations of tin laser heating demonstrate that the observed surface modification is due to melting but not oxidation. For the case of water environment, the conductive heat transfer to water is found to play only a minor role in tin heating and melting. The simulations show also that the formation of a water vapor layer near the tin surface occurs at a considerably higher fluence, above 0.15 J/cm2, and thus the surface damage is not affected by scattering of the incident laser light by the vapor–liquid interface, typical for more refractory metals. Peculiarities of laser ablation of low-melt materials in liquids and nanoparticle formation are discussed.

Original languageEnglish
Article number734
Number of pages8
JournalApplied Physics A: Materials Science and Processing
Volume125
Issue number10
DOIs
Publication statusPublished - 1 Oct 2019

Keywords

  • ALLOY NANOPARTICLES
  • INDUCED DAMAGE
  • ABLATION
  • LIQUIDS
  • SILVER
  • METAL
  • GOLD
  • VAPORIZATION
  • THRESHOLDS
  • SIZE

Fingerprint

Dive into the research topics of 'Dynamics of nanosecond-laser-induced melting of tin in vacuum, air, and water'. Together they form a unique fingerprint.

Cite this