Abstract
The problem of experimental modeling of discontinuity formation in a cavitating liquid layer under shock wave loading is considered. It is shown that the discontinuity takes the shape of a spherical segment and retains it up to the closure instant. The discontinuity surface becomes covered with a dynamically growing thin boundary layer consisting of bubbles, which transforms to a ring-shaped vortex bubble cluster at the instant of the discontinuity closure, generating a secondary shock wave. Specific features of the structure of the cavitating flow discontinuity arising at loading intensities lower than 0.1 and 5 kJ are discussed.
Original language | English |
---|---|
Pages (from-to) | 837-844 |
Number of pages | 8 |
Journal | Journal of Applied Mechanics and Technical Physics |
Volume | 58 |
Issue number | 5 |
DOIs | |
Publication status | Published - 1 Sep 2017 |
Keywords
- cavitation process
- discontinuity
- liquid layer
- scale factor
- shock wave