Divisible Rigid Groups. Morley Rank

Research output: Contribution to journalArticlepeer-review

Abstract

Let G be a countable saturated model of the theory Im of divisible m-rigid groups. Fix the splitting G1G2..Gm of a group G into a semidirect product of Abelian groups. With each tuple (n1,.. , nm) of nonnegative integers we associate an ordinal α = ωm−1nm+.. + ωn2 + n1 and denote by G(α) the set G1n1×G2n2×…×Gmnm, which is definable over G in Gn1+…+nm. Then the Morley rank of G(α) with respect to G is equal to α. This implies that RM (G) = ωm−1 + ωm−2 +.. + 1.

Translated title of the contributionДелимые жёсткие группы. Ранг Морли
Original languageEnglish
Pages (from-to)207-224
Number of pages18
JournalAlgebra and Logic
Volume61
Issue number3
DOIs
Publication statusPublished - Jul 2022

Keywords

  • divisible m-rigid group
  • Morley rank

OECD FOS+WOS

  • 1.01 MATHEMATICS

Cite this